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Procedures to define accurate boundary conditions for reactive
flows described by Navier-Stokes equations are discussed. A for-
mulation based on one-dimensional characteristic waves relations
at the boundaries, previgusly developed by Poinsot and Lele for
perfect gases with constant homageneous thermodynamic proper-
ties, is rewritien and extended in order to be used in the case of
gases described with realistic thermodynamic and reactive models.
This kind of formulation appears to be particularly accurate and
stable, which is a necessity for non-dissipative codes, in particular
for direct simulation of turbulent reactive flows. The simple and
solid physical basis of the method is also very attractive and makes
it an easy technique to implement in any Navier-Stokes solver.
Examples of application in several different computations per-
formed with mixtures of gases and using detailed chemistry and
thermodynamic modeling are described. In all cases, acoustic
waves, entropy waves, and flames are proved to propagate without
perturhatign through the houndaries. @ 1995 Academic Press, Inc,

1. INTRODUCTION

Recent interest in full direct numerical simulations of Navier—
Stokes equations, especially for reacting flows, has led to new
numerical techniques and to new approaches for boundary con-
ditions. Simulations may be performed today with high order
spectral-like finite difference schemes which allow very low
numerical dissipation rates {2, 3]. The precision and the poten-
tial applications of these methods, however, are constrained by
the boundary conditions which have to be inciluded in the final
numerical models. Simulations in which no periodicity is as-
sumed and flow inlets and outlets must be treated are needed
for reacting fiows. Indeed, these simulations are strongly depen-
dent on boundary conditions and on their treatment, and general
boundary conditions for direct simulations of compressible
flows have to be developed. Although finite-difference ap-
proaches are much more flexible than spectral methods to spec-
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nify boundary conditions, the choice of these conditions and
the details of their numerical implementation remain ditficult
questions in many cases and often constitute the weakest point
of the simuiation.

A general method to specify boundary conditions for Navier—
Stokes flows was recently derived by Poinsot and Lele (1].
This technigue, called NSCBC {Navier—-Stokes characteristic
boundary conditions) is based on characteristic theory and in-
cludes a special treatment for viscous terms. It uses the right
number of conditions to satisfy well-posedness for Enler and
Navier—Stokes equations [4—6], and relaxes smoothly from
Navier-Stokes to Euler conditions when the molecular viscos-
ity goes to zero.

The NSCBC technique was derived for perfect gases with
constant and homogeneous thermodynamic properties. How-
ever, direct simulations of reacting flows with complex chemis-
try require the treatment of gases with realistic variable thermo-
dynamic coefficients. These variations correspond mainly to
two important effects in reacting flows: '

* The properties of the gas change rapidly with temperature
so that even a pure gas submiited to temperature gradients will
have non-constant heat capacities.

* Most gases of interest for a combustion problem are mix-
tures of gases and the properties of the mixture change not
only because of temperature variations but also because of
changes in local composition.

This paper describes how the initial NSCBC technique may
be extended to consider these effects in the treatment of bound-
ary conditions. The main difficuity considered here is to identify
acoustic and entropy waves in a flow described with detailed
thermodynamic models. A general technique is proposed in
this paper and implemented in a reactive direct numerical simu-
lation code.

Section 2 will describe the theory behind the method and its
implementation for Navier—Stokes equations. Section 3 will
provide examples of implementation for different types of
boundary conditions. In Section 4, we present results obiained
with this new procedure, and Section 5 wiil conchide the dis-
cussion.
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2. MATHEMATICAL TREATMENT

2.1. Principles of the Method

Due to precision requirements, direct numerical simulation
(DNS) technigues use centered schemes for spatial derivatives
and provide only a very small amount of numerical damping.
This pumerical dissipation is usually too small to damp high
wave-number instabilities. These numerical waves then propa-
gate in the computational domain with group velocities which
may be negative even though all physical characteristic speeds
(#, u + ¢, n — ¢) may be positive [7] (as, for example, in a
supersonic flow). Numerical waves are reflected at boundaries
and, depending on boundary conditions, may generate new
physical waves (with long wavelengths). This process leads to
unphysical oscillations [1] which cannot be accepted in a DNS
computation. A classical solution is to simply suppress bound-
ary conditions by using a periodic computation domain. For
reacting flows and for many practical flows with inlets and
outlets, this solution is not practical and cone has to deal with
real boundaries. It is in this case of great importance to avoid
the creation of numerical waves at boundaries and, therefore,
to use carefully designed boundary conditions.

To achieve this goal, a new technique for the treatment at
boundaries based on inviscid characteristic theory was intro-
duced for the Buler equations [4, 8, 9]. An extension to Navier—
Stokes cases was proposed by Poinsot and Lele [1]. The princi-
ples adopted for this extension are independent from the thermo-
dynamic mode] used to describe the gas, and the procedure is
performed here as described in [1]. However, the actual treat-
ment is guite different when considering gases modeled with
realistic thermodynamic properties and will be described in
more detail.

The technigue is based on the idea that any hyperbolic system
can be associated with a corresponding system of propagating
waves. At the boundaries of the computational domain, some
of these waves leave the domain while others penetrate it.
The outgoing waves are completely determined by the solution
inside the domain and do not present any degree of freedom. On
the other hand, the incoming waves cannot be fully determined
unless the user has given complementary information, the so-
called *‘boundary conditions.”” Determining the waves corre-
sponding to the current problem requires a transformation be-
tween the conservative system in which the integration is gener-
ally conducted and a primitive systeth where the wave structures
and the propagation direction of these waves, can be computed.
The mathematical description proposed in this paper should
help understanding the practical process and follows the lines
of Thompson [4, 9]. Unfortunately, this author is working in
a non-reacting case, using only one species and constant homo-
geneous values of all thermodynamic parameters, which leads
to a quite different system of equations. Aithough the practical
variations of these quantities are generally observed to be small,
results obtained using this first theory may not be acceptable
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in multicomponent reacting cases (see Section 4), because of
the important reflections of acoustical waves at the boundaries.

The notations employed all along this paper are analogous
to those of Thompson [9} and Poinsot and Lele [1]. However,
in order to use detailed chemistry modeliing, it is more conve-
nient to work in a primitive system confaining the temperature
in place of the pressure. All major chemistry packages (e.g.,
CHEMKIN and TRANSPORT [10, 11]) provide the evolution
of the thermodynamic properties of the gas as a function of
the temperature, and it is awkward to follow this evolution by
using pressure and perfect gas law. This explains why our wave
expressions will be similar but different from those used in
previous publications.

Appendix A presents the mathematical derivation of the con-
servation equations and of the wave expression to be used at
the boundaries: in order to find the characteristic waves of the
conservative system under investigation, the first step is to
transform it into a primitive system in which the wave structure
can be easily described. Finding the eigenvalues and eigenvec-
tors of the primitive sysiem matrix, one can express both the
primitive (A.25) and conservative systems (A.26) in terms of
a vector £ which represents the variation of the characteristic
waves amplitude. The final resulis of Appendix A are summa-
rized and used directly tn the next section. The mathematical
development of Appendix A is mainly intended for people who
wish to adapt the procedure presented here to other cases (e.g.,
axisymmetric computation, or another system of equations).
Those who work in a three-dimensional Navier—Stokes frame
can readily use the results of Section 2.2 to implement this
boundary treatment.

2.2. Wave Menrification in the Conservative Equations at
the Boundaries

The initial set of equations is the reactive Navier—Stokes
system of conservation equations including compressibility and
reaction terms for N, different species. We define the total
Energy as

W+ vt 4wt
2

&= p

Ni
+p;(h,-1’,-)—p- (1)

Using summation convention on indices j and k, the system of
equations can be written as [12]

ap n apw;} _ 0
Jt ax;
pu)  Mpu; a7
(pu) (puu,)_’_ggz_j_'i (= 1-3)
dt ax) Bx,- Bx,- (2)
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d(p¥}  d(pYuy; 3p¥ Vi .
k) | Mohw) . _ 08Vod) | iy (= 1o,
ot x; ax;
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The pressure can then be computed using the perfect gas law:

p=pt 3

The final outcome of the analysis of Appendix A is to provide
an equivalent form of these equations in which characteristic
waves are easily identified (A.26), From now on, we will con-
sider only the boundary conditions assoctated with the x direc-
tion (boundaries corresponding to a constant x value). Results
for y and z boundaries are fully symmetrical. In non-conserva-
tive form, the finai set of equations is, when developing (A.25):
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Most codes for compressible flows use a conservative form
for these equations. In this case, the system to use is (after
developing (A.26)):
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In these systems, the C:'s defined in (A.19) take into account all
terms which do not involve any first derivative of the primitive
variables vector L/ (A.2) along the x direction, i.e., the viscous,
diffusive, and reactive parts. This form is the generalization to
reactive gases with variable thermodynamic properties of the
initial equations of Poinsot and Lele (Eqgs. (24) to (28} in [1]).
In this set of equations, the £, terms are wave amplitude
variations and can be written, for j = 2 o N,: '
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The wave speeds associated to the different &£;'s are respectively



250
(u —~ c) for %, u for all %75 wit j = 2 to (N, + 4); and
(u + (.‘) for 'E£Nr+5-

2.3. Wave Specification Using the Extended NSCBC
Technique

Up to now; we only replaced an expressmn (the convectlve
derivatives) in the pnm:twe system of equanons by an equal
value exprebsed in terms of the characteristic waves of tlus
system. The next step is to determine the characteristic waves
whose value will change depending on the chosen boundary
conditions.

In the NSCBC method this is done by assummg that the
waves at the boundaries m the fuil Nav:er—Stokes problem
have the same amphtude as in the case of an inviscid one-
dimensional problem The analysns isthen performed by consid-
ering the equations corresponding to thiS local one-dimensional
inviscid non-reacting associated system (LODI system). At the
boundaries of the computational domain (x = X, OF X = X,
for the x direction), the system (4) is rewritten under the assurnp-
tion of negligible viscous, reactive, and transverse terms (i.e.,
the C; terms are neglected) to obtain the LODI relations. These
LODI relations provide “‘compatibility’” conditions between
the values of the ¥;'s and the conditions used at the boundary.
In terms of non-conservative variables, the LODI equations are:

9 | PC

r L+ Lyrs) + Fyag = 0 (13)
BT N‘+3
—5;+5£,+$N35+2§£,=0 (14)

=4
) C
S s = )L =0 (13)
t C
%H+$2-o (16)
aw
Do = 7
=0 a7
ay, Wi Wil

Do le e =0 8
T T (1)

3, Wol, _

o wre=l (19)
o 1,

Y WT wes = 0. 20

1.ODI conditions may be obtained for all variables of interest
50 that any boundary condition will have a corresponding LODI
condition relating wave amplitudes vaniations. For example,
[LODA relations associated to pressure, flow rate, or total en-
thalpy are:
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Moreover 1t is also stratghtforward to derive LODI rélations
associated o gradients:
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The LODI relations are used to infer values for the ¥; terms
so that these values are compatible with the desired boundary
conditions. Note that the final set of equations which will be
used to integrate boundary values in. time is not the LODI
system but system (4) or (5) which involve all terms (transverse,
viscous, and reaction terms). The LODI system is only invoked
to provide wave amphtude estimations at the boundaries. For
example, if we want to impose a constant x-velocity at the
boundary, we see from (15) that we should impose £y .5 =
&,. A complete discussion of these relations can be found in
(1]. In particular, conditions corresponding to the viscous part
of the equations are given in [1] and were used without
changes here.

Some examples of implementation are given for the new
procedure in the next section, including the *‘non-reflecting’’
and infet conditions used for the computations presented in
Section 4.
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3. PRACTICAL IMPLEMENTATION

The practical uvse of the proposed boundary treatment is
simple and can be described in four points:

1. Inside the domain, time-integration is realized as usual,

2. Ateach boundary, the sign of the eigenvalues associated
to the different ¥;s is determined. The £’s associated with
outflowing waves are determined from the solution inside the
computational domain, and may be computed by using appro-
priate equations (6) to (i2). The gradients appearing in {6) to
£12) are derived from one-sided derivatives inside the computa-
tional domain.

3. Generally (except for supersonic flows), not all eigenval-
ues have the same sign. This means that some £’s are still
undetermined after the previous step because they correspond
to ingoing waves, These £;'s cannot be computed from values
of the solution inside the domain. They have to be obiained
from the appropriate LODI equations given in (13) to (203,

4. After all ¥£s are known at the boundaries, their values
are used for the time-integration, considering (4) in primitive
variabies, or (5) in conservative form. The C’s or C’s are
computed in the same way as inside the domain, but with one-
sided derivatives as the solution is only known on one side of
the boundary. At this level, specific Navier—Stokes conditions
are integrated if necessary as described in {1].

Let us now consider some usual boundary conditions:

* Subsonic inlet with imposed values. The values of the £/'s
that might be imposed are given by (14) to (20) in the LODI
system of equations. For example, $~,+s = &, is the compatibil-
ity condition to impose if one wants to see the inlet x-velocity
at a constant value, corresponding to the local initial condition.
In the same way, £, = £; = 0 corresponds to a constant y
and z-velocity at the inlet. Letting &, = 0 fori = Sto N, + 3
corresponds 10 imposed mass fractions ¥, to Yy . The con-
dition £, = ~(T/p)%y .4 is required if ¥, is to be imposed,
If the temperature is to be imposed: 2%, + Sop
gj =0

Considering again all these conditions, it can be seen that
such 4 subsonic inflow possesses only one degree of freedom,
which was expected as only one eigenvalue (¢ — c) is negative
at this boundary. This eigenvalue is associated with &,, which
means that £, is directly computed from the solution inside
the computational domain and can be used to compute all the
other £;’s, with the system being written finally:
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$2 =10
§£3 =0
$4 - '_A-ée]
gs =
(25}
5-£NJ+3 =0
33Nj+4 = 2§§BI
££N,+5 = $| .

* Supersonic outflow. In this case, all the eigenvalues are
positive, which means for an outflow that all £/'s are directly
computed by using values inside the computational domain, as
all waves are leaving this domain. No additional boundary
conditions are required.

* Subsonic non-reflecting outflow. In this case, only one
eigenvalue is negative. For an outgoing flow, this means that
there is only one degree of freedom, as in the first case consid-
ered above. It would be possible to get a perfectly “‘non-re-
flecting”” system by setting &£, = 0. In fact, as explained in
[1]. such a perfectly non-reflecting system is generally irrele-
vant. This condition (see [9]) can lead to serious problems.
Considering, for example, a two-dimensional shear layer, using
at the inlet the conditions described above for a subsonic inflow
and impiementing at ail other boundaries perfectly non-re-
flecting conditions would impede the determination of an aver-
age value of the pressore in the computational domain. Physi-
cally, this information is provided by pressure waves coming
from downstream “‘infinity’” and propagating upstream. In this
particular case, perfectly non-reflecting conditions lead to an
ill-posed problem. Having recognized this fact, it is possible
to model the physical information process by letting small
acoustical waves feed pressure information back into the do-
main through the downstream boundary, by imposing [1]

%= @~ o) [(zuz)a_p+ (w_-_z)_a_z

- (lg_)a_u
2C,, ax

2 y p/ox

2y W,

2 v

S (1 y = 1WT) o,
=1 ax

ax

£ = K(p - pa); (26)
TABLE 1
Conditions of the Different Test Cases
Figure Wave type  Wave direction Bnundary type Method

1 Acoustic Right Non-reflecting -1
2 Acoustic Right Nen-reflecting This paper.
3 Acoustic Left Iplet This paper
4 Entropy Right Non-reflecting This paper
6-9 Natural Both Inlet & Non-reftecting  This paper
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FIG. 1. Propagation of an acoustic wave towards a non-reflecting boundary with the previous method of Poinsot and Lele [11.

K is a constant which determines the speed with which the
average pressure in the computational domain relaxes towards
the imposed pressure at infinity p.,. Rudy and Stiikwerda [13,
14] suggest that the optimum value of & is of the order of
(1.— MHe/(2pC,L), where M is the maximal Mach number in
the domain and L is a characteristic size of this domain. The
vector &£, being the only free parameter, all the other £;’s are
directly computed using (7) to (12},

The above local one-dimensional system present, of course,
some imperfections for multidimensional cases, as pointed out
in [1]. As we consider only a one-dimensicnal system at the
boundary, this treatment is only exact for waves propagating
perpendicularly to the boundaries of the domain, which leads
to some small amount of refleciions for other waves. In the
same way, diffusion and reaction terms are only considered as
being passively convected information. Nevertheless, numerous
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FIG. 2. Propagation of an acoustic wave towards a non-reftecting boundary with extended method,

computations have been conducted using, in particular, the
non-reflecting and inlet-type conditions described above, but
also isothermal or adiabatic wall conditions, as well as
supersonic inflows and outilows [1-3, 15-18]. In all cases,
the behavior of these boundary conditions has been the
one expected, with a negligible amount of reflection at the
boundaries, as can be seen from the examples proposed in
the next seciion.

4. EXAMPLES OF APPLICATION

In order to test the improvements introduced by this new
formutation over the previous one, we constder the behavior
of acoustic and entropy waves at reflecting and non-reflecting
boundaries. A summary of these different one-dimensional
cases is proposed in Table 1. The comptuational code used for
these tests is a fully explicit direct simulation code solving
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FIG. 3. Propagation of an acoustic wave towards an infet-type boundary with extended method.
the complete reactive Navier—Stokes equation, using the A set of propagating acoustic waves is created at t = 0 by

CHEMKIN and TRANSPORT packages [10, 11] to model the using the initial conditions

influence of reacting gases with accurate thermodynamic

coefficients [16]. This code has high-order accuracy (presently

sixth order in space and third order in time). Spatial differ- x— L2V
encing is performed using compact schemes as described by u =g+ ‘Qﬂe"p[— (% T) ]
Lele [19), while time differencing uses a third-order

Runge--Kutta scheme. P = Po X pocolu — up)
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Temperature (K)
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Density (kg/m’)

0.18
0.17 -
16 =
15+
141
s \/;

[w]

18~
17
16
15
14

.13
18]

17

16

.15~

14~

13
17 ~

16 —

.15 —

14-7

A3
BERS \
17 -

16 —

.15 ~

14 —
13
18 \

17 4
16~

154
14—

.13

2.0x1067°
x (m)

1
0.0 0.5 1.0 1.5

FIG. 4. Propagation of an entropy wave towards a non-reflecting boundary with extended method.

+ Pol#t — i)

P= Py o

27

where values with index 0 denote some original uniform state
and & and B deterrnine the strength and stiffriess of the super-
imposed acoustic wave. The choice of the sign in the equations

for p and p determines the direction in which the acoustic wave
will propagate. Entropy waves correspond simply to a bulge
in temperature (and the corresponding bulge in density) on an
initial uniform field of velocity, density, pressure, and tempera-
ture. They propagaie at the convection speed towards the cho-
sen boundary.

The procedure of Poinsot and Lele was proven to be adequate
in perfect gas cases with copstant homogeneous thermo-
dynamic properties [1}, and we do not reproduce these
results here.
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In order to test the capacities of the extended technique, we
work now with multicomponent inhomogeneous flows. In the
tirst case of interest, an acoustic wave propagates towards the
right boundary in a mixture of hydrogen and oxygen, where
chemical reaction is not allowed. The two species concentra-
tions present a constant gradient in the domain, with the ini-
tial conditious:

Y(Hi) = = 04, Y(Hy).r = 0.6,
Y(O?.)x=0 = 0-67 Y(Ol)x:L =04,

(28)

The right boundary is in this case a non-refiecting boundary
with a constant K = 0. Although unadapted in most cases as
exptained in Section 3, this value of X can be chosen without
problems for short-time simulations. This is, of course, the only
value which gives a perfectly non-reflecting boundary. Taking
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K > 0 produces z partial reflection of the acoustic wave at the
boundary, growing with £,

Using detailed thermodynamic models for the original formu-
lation of the boundary conditions given in [1], the propagation
of this acoustic wave is shown in Fig. 1. A non-negligible
amount of numerical reflection can be seen when the acoustic
wave comes in contact with the right boundary, which should
in fact be perfectly ‘‘non-reflecting.”” The amplitude of this
non-physical perturbation is such that this original formulation
of the boundary treatment appears (o be inappropriate when
using realistic thermodynamic properties. It is in this case im-
possible to get accurate boundary conditions without taking
into account the temperature and composition dependances of
the gas properties.

The extended method described in this paper is able to deal
with this problem (Fiz. 2) and lets the acoustic wave go freely
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through the boundary. No reflection of the incoming acoustic
wave can be seen at the right boundary,

In the second case, the same acoustic wave is propagating
towards the left, and the left boundary is an inlet boundary
with imposed values of velocity, temperature, energy, and con-
cenfrations. As in the above case, the exiended method gives
an oscillation-free exact result (Fig. 3), corresponding to the
total reflection of the incoming wave,

The third case is analogous to the first one, but uses an
entropy wave in the place of an acoustic wave. Once again,
the new treatment appears to be particularly accurate, the en-
tropy wave being convected without perturbation through the
non-reflecting boundary (Fig. 4).

The fourth and last case corresponds to a situation studied
in detail in £16]. In this problem, a one-dimensional hydrogen—
air diffusion flame antoignites in the compurational dorain.
Initial and boundary conditions are described in Fig. 5. Impos-
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FIG.9. Propagation of an igniting flame towards a non-reflecting boundary
with extended method. Time 1= 2.5 X 107 s,
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ing as the initial and left-boundary condition a constant velocity,
this igniting flame is pushed towards the right boundary, at
which a non-reflecting condition with K = 0.2 is imposed. As
can be seen in Figs. 6-9 corresponding to different physical
times, the reacting flow passes through the boundary without
perturbation. The evolution of the diffusion flame, which sepa-
rates into two parts after the ignition {20, 21] is not perturbated
by the crossing of the non-reflecting boundary. Such a test is
particularly difficult for any type of boundary conditions, and,
to the author’s knowledge, very few boundary treatments allow
an exact and oscillation-free result as observed here,

5. CONCLUDING REMARKS

The formulation of the boundary treatment based on charac-
leristic wave relations, as proposed by Poinsot and Lele and
extended in this paper for gases with realistic thermedynamic
and reactive properties, appears to be particularly accurate and
stable, as proved by the different tests presented in the previous
section. This boundary formulation is very attractive for all
direct simulations of turbulent reacting flows,

The method used in this paper is described in a three-dimen-
sional case, and the examples of Section 4 are computed with a
totally expticit finite-difference direct stmulation code. But it
must also be mentioned that this same boundary treatment has
been implemented and is presently used in two-dimensional
codes (planar or axisymmetric) and has also been used success-
fully in implicit solvers [22]. Deriving the adapted formulation
for these latter cases from the basic one proposed in Section 2 was
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in a transition phase, as they are up to now considered to be
only passively convected with the flow. A complete formulation
that takes thoroughly into consideration all terms in a similar
way is presently under study.

APPENDIX A: CONSERVATIVE SYSTEM AND WAVE
EXPRESSION AT THE BOUNDARIES

The mathematical treatment is given here for a three-dimen-
sional problem, but its reduction to two-dimensional or axisym-
metric cases is straightforward. For a multicomponent dimen-
sional reactive mixture with N, species, the system of
conservative variables can be written

U= (Uh s I7N,+s)’
(A1)

=(p, e, pu, pv, pw, pt, ..., p¥u J'.

The primitive variabies, chosen in order to get the most practical
presentation, are taken as

U= (U, s UNYH)!
(A.2)

=(pLuwv,w Y., )

The matrix telating the system U, used to integrate the equa-
tions, to the system U in which we realize the analysis at the
boundaries, is then

straightforward, and it is believed that the boundary formulation P = 30/aU {A3)
proposed here can be easily used in most cases of interest,
The treatment of the viscous terms at the boundaries is still  which, in our case, can be written
] 0 0O 0 1] 0 0 v e 0]
Py Py opu o pv pw Py Py P, NS
Y] 0 p 0 0 0 )] SRR o
v 8] 0 p O 0 0 0
p= w 0 0 0 p 0 0 0
¥, 0 0 ¢ 0 o 0 0
¥, 0 ¢ ¢ O 0 P g 0
0 ¢ 0 ] P 0
Yo 0 0 0 0 0 0 p
with, for i between 1 and N,: RT
N, P-; i = h,‘ A I (A'T)
24 op? 4l s+ TP ( )
Py =KW L S an -8 s W,
2 =1 W
Py, = poC, (A.6) The inverse matrix P! is then given by

(A4)
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1 0 0
PoY 1ozu
G, pC,
~ulp 0 lip
—ulp 0 0
-wip 0 0
-Y/p 0 0
: 0
0
—Yylp O 0
with
pry EA T
2pC,
P = B R oy

oC,

Pefining as F* the flux vector of the conservative variables

along the &th direction, one gets, for example, in the x direction:

Fl = (F}a rere F('IVJ+5)I

HYI,

uYN,—i

HYN’

with

pu
pw

pY

pY, N1
pYy,
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0 0 0 0
A Physs
pC, oG,
0 0 0
l/p 0
0 Ulp 0 (A.8)
0 0 lp 0 0
0o I/p 0
0 0 0 i/p
= {pu, (e, + plu, pi’ + p, puv, puv, puY,, .., pu¥y).
(A9) It is then possible to write
k
| 8 _ e8Y (A12)
(A.10) ax; dx;
where the matrix @ is composed of elements g}
gk = aF}aU;. {A.13)
(A.11) In our case, Q' is simply written
0 0 0 0
puv  puw  puh, pithy,
0o o PRT PRT
W, Wy,
pu 0 0 0
0 pu 0 0 (A.14)
0 0 pu 0 0
0 0 pu 0
0 0 0 H piut
If one considers now the x boundaries (the formulation being
symmetrical for the ¥ and z boundaries), the system of equations
can be written in conservative form:
{A.15) N
al  aF' | &
—4+—+ C=0. AT
Jf dx ¢ )
(A.16)

The vector € includes all terms which do not contain any
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first derivative of {7 along the x direction. These terms are
considered as being passively convected along the x direction
and do not play a role in the present characteristic wave analysis.
The vector € stands here also for all diffusive derivatives and
reactive source terms.

Defining

A = POk, (A.18)

Eq. (A.17) can be cast into primitive form, according to

U
—+A -+ C= :
Y A ™ C=0 (A.19)
The matrix A' is then given by
uw ¢ p 0 G O 0 Q
0 u _ET: 00 0 o --- 0
W
RL R . o o RT RT _ RT
w W W W, Wy
0 0 0O o 0 0 0 0
0 o 0 u 0 0 0 (A.20)
G 0 0 0 0 u 0 0
0 0 00 0 u 0
0o 0 0 00 O 0 u

Writing the determinant of {A — AI), one can easily find the
N, + 5 eigenvalues of matrix A:

r\.| =4 —C
/\.2 = U
AN_'+4 =u (A21)

ANJ+5 =u-+tc.

Note that eigenvalues A; to Ay ., are identical and equal to the
local velocity #. A base of right eigenvectors, associated with
the above eigenvalues, is given for example by, for i = N,,

C C '
= (p—f i, ~=0,9,0,0,0, ...,0)
c [

rn=140,0,0,1,0000,.,0r
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r;=1{0,0,0.0,1,0,0,0,..., 0y

Wi

Fas = (0, 1,0, ...,0, — —,0, ..., 0¥
wWrT

et L
index i + 5 (A.22)

W,
I'NH:(1,0,0,0,0,‘—:,0,0,...,0)’
s pW

C, C '
tuas = (Ec—zg, 1’_c=£’ 0,0,0,0,0, .., 0) )

1t is then possible to constitute a matrix § by taking as columns
the eigenvectors r, given by (A.22). Inverting § gives a base
of left eigenvectors /;, which can be cast in the form, for ¢
between 2 and N,

b 1T 5o 1Ty
w0y W 2y Wy

L=1(0,001.0000,..0
$=100,0,0,0,1,0,0,0,..,0

= (_1 ~yT1 | -y WT WI WT)
4 ')’ p"}l’ 1 My My y Wg")’WZ! ---:yWN’
W (A.23)
Ly = (0,0,0, .0, — 2L o, ... 0)
W;
. N ——
indexi + 5
y—1 _op pW pW)
by = L= =2 00,0, - 22 -
e ( y o YW T yWy
; =('Y_—11"?’_“]L001__1W_T 7_—1W_T)
N5 2’}’ p, 2_)’ 12~Ep1 L] 2? W{’“l’ 2')’ WN! .

The vector I, is associated to the eigenvalue (u — ¢}, 1N5+5 to
(w + ¢y, hto !N‘M are all associated to the eigenvalue u. The
{, and Iy +s Waves correspond to acoustic waves while all the
others are convecied by the mean flow. For i = 1 to (N, -+ 3),
one can define the vector £ of components &;, representing
the wave amplitude variations:

% =2y (A.24)
ox
Using &£, Eq. (A.19) can also be written
%} +S5L+C=0, (A.25)
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or in conservative form,

5)£+PS$+ C=0.

Py (A.26)

The values of the components of vector & are proposed in Eqgs.
(6) to (12). Using these equations, the vector S representing
the convective terms of the primitive system is

r (PEp/CZ)(Sfl + =(£N,+5) + $N1+4
M43

‘gl + $N!+S + 2 n%i
=4
(&'Nﬁ - Sfl)aaf c

£,
<, (A.27)

~WELNHWT) — W, Ly 1o/ (Wp)
Wy Fs/(WT)

SE =

\ ~ Wy L 1/ (WT).

APPENDIX B: LIST OF SYMBOLS

®

parameters for the acoustic wave definition

reduced matrix for the convective term coefficients

sound velocity (m/s)

heat capacity of the mixture at constant pressure (J/(kg.K))
heat capacity of the mixture at constant volume (J/(kg.K))
viscous, transverse and reactive lerms in the primitive system
viscous, transverse and reactive terms in the conservative system
total energy (I/m?)

flux vector of the conservative variables along direction %

Cpf Cu (_)

enthalpy of species ¢ (J/kg)

total enthalpy (2, + p¥p (Jke)

pressure relaxation constant (1/s)

length of the domaia (m)

ith left eigenvector of matrix A

ith wave amplitude variation associated to the primitive system
ith eigenvalue of matrix A, associated to wave &; (m/s)
Mach number (=}

number of chemical species considered (—)

transformation matrix between £/ and U/

pressure (Pa)

ith component of the heal flux (kg/s%)

gas constant (}/mol K))

R/W (I (kg K))

ith right elgenvector of matrix A

P density (kg/m®)

T i, j component of stress tensor (Pa)

u, U, w velocity along x, v, and z (m/s)

F MR A0 OlAls g

Lo o I~ oy =

o

N xS T vEE

fon]
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7 velocity along x; (m/s)

v vectors of primitive and conservative variables

¥: mass fraction of species i (—)

Vi, diffuston velocity of species { along direction j (m/s}
W mean molar mass (kg/mol)

W; meolar mass of species / (kg/mol)

@, chemical production rate of species i {mol/{m’s)).

ACKNOWLEDGMENTS

The authors wish to acknowledge the support of SNECMA and of the
European Community. Many helpful discussions with J. Segatz must also
be mentioned.

REFERENCES

1. T. ). Poinsot and S. K. Lele, J. Comput. Phys. 101, 104 {1992),

2. 8. K. Lele, “*27th Aerospace Sciences Meeting, 1989,”" AIAA Paper 89-
0374 (unpublished).

. T. Poinsot, D. Veynante, and S. Candel. J. Fluid Mech. 228, 561 (1991).

K. W, Thompson J. Comput. Phys. 68, 1 (1987).

. L C. Strikwerda, Commun. Pure Appl. Math. 30, 797 {1977).

. P. Dutt, SIAM J. Numer. Anal. 25(2), 245 (1988).

. R. Vichnevetsky and 1. B. Bowles, Fourier Analysis of Numerical Approxi-

mations of Hyperbolic Equations,’’ (STAM, Philadelphia, 1082),

8. T. C. Vanajakshi, K. W. Thompson, and D. C. Black, J. Comput. Phys.
84, 343 (1989).

9. K. W. Thompson, **Stanford Summer Program, 1990 (unpublished).

10. R. J. Kee, J. A. Miller, and T. H. Jefferson, SANDIA Rep. SANDSO-
8003, 198( (unpublished).

11. R. I. Kee. J. Warnatz, and J. A, Miller, SANDIA Rep. SAND33-8209,
1983 (unpublished).

12. F. A, Williams, *‘Combustion Theory,”” 2nd ed., (Addison-Wesley, Read-
ing. MA, [985).

13. D. H. Rudy and J. C. Strikwerda, J. Comput. Phys. 36, 55 (1980).

14. D, H. Rudy and ). C. Strikwerda, Comput. & Fluids 9, 327 (1981).

15, T. Poinsot, D. Veynante, and S. Candel, in Proceedings, Twenty-third
Symposium (International) on Combustion, 1990 (The Combustion Insti-
tute, Pittsburgh, 1990).

16. D. Thévenin, ‘‘Dynamique de I'allumage de flammes de diffusion dans
des écoulements cisaillés,” Thése de doctorat, Ecole Centrale Paris, Nbr.
92-042, 1992 (unpublished).

17. D. Thévenin, F. Behrendt, U. Maus. and J. Warnatz, in Proceedings,
Fifth International Conference on Numerical Combustion, Garmisch-
Partenkirchen, Germany, 1993, p. 121 (unpublished).

18. M. Baum, T. J. Poinsot, and D. C. Haworth, in Proceedings, Fifth Interna-
tional Conference on Numerical Combustion, Garmisch-Partenkirchen,
Germany, 1993, p. 18 (unpublished).

19. 8. K. Lele, J. Compur. Phys. 103, 16 (1992).

20. A. Lifian and A. Crespo, Combust. Sci. Technol. 14, 95 (1976).

21. D. Thévenin and S, M. Candel, Combust. Sci. Technol, 91, 73 (1993}

22. ). Segatz, U. Maas, R. Rannacher, J. Warnatz, and J. Wolfrum, in Proceed-

ings, Fifth International Conference on Numerice! Combustion, Garmisch-

Partenkirchen, Germany, 1993, p. 110 (unpublished).

-~ o B e



